Cervical Precancer Treatment

Dr BT Guzha, Gynaecological Oncologist, University of Zimbabwe

Disclosures

• None

Outline

- Epidemiology of cervical cancer
- WHO Elimination cervical cancer elimination plan
- Treatment of preinvasive disease
- Ongoing research
- Conclusion

INTRODUCTION

- Cervical cancer is a global public health problem especially in LMICs
- Globally an estimated 604 127 new cases of cervical cancer and 341 831 deaths occurred in 2020
- Cervical cancer morbidity and mortality is a preventable
- Reduction in cervical cancer incidence and mortality, has thus far been observed predominantly in countries with a high Human Development Index (HDI

Estimated age-standardized incidence rates (World) in 2020, all cancers, females, all ages

ASR (World) per 100 000

≥ 157.6	
136.4-157.6	
125.8-136.4	
112.3-125.8	Not applicable
< 112.3	No data
112.3-125.8 < 112.3	Not applicable No data

۰.

Zimbabwe
South Africa
Namibia
Malawi
France, La Réunion
Kenya
Mauritius
Mali
Uganda
Cabo Verde
Eswatini
Zambia
Tanzania, United Republic of
Mozambique
Burundi
Algeria
Côte d'Ivoire
Cameroon
Madagascar
Ethiopia
Gabon
Senegal
Liberia
Angola
Ghana
Comoros

ASR(W)

194.2 191.9 177.8

168.2 166.3

162.9

154.4

134.2

132.5 132.4 130.8 130.5 128.9

128.4

Population	ASR(W)		
Equatorial Guinea	126.5		
Lesotho	125.3		
Nigeria	122.5		
Guinea	122.5		
Eritrea	122.0		
Mauritania	121.6		
Rwanda	119.0		
Guinea-Bissau	118.7		
Chad	114.8		
Sierra Leone	114.6		
Тодо	111.8		
Botswana	109.9		
Central African Republic	109.4		
Congo, Democratic Republic of	105.7		
Sao Tome and Principe	103.0		
South Sudan	102.5		
Benin	92.7		
Niger	89.7		
The Republic of the Gambia	83.7		
Congo, Republic of	81.7		

All rights reserved

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2020 Map production: IARC (http://gco.iarc.fr/today) World Health Organization

Burkina Faso

Estimated age-standardized mortality rates (World) in 2020, all cancers, females, all ages

ASR (World) per 100 000

≥ 102.4	
91.4-102.4	
83.5-91.4	
75.9-83.5	Not applicable
< 75.9	No data

Population	ASR(W)
Zimbabwe	145.3
Malawi	130.3
Mali	120.8
Uganda	114.5
Kenya	112.6
Namibia	109.6
Burundi	109.0
Mozambique	106.9
Zambia	103.4
Tanzania, United Republic of	102.9
South Africa	100.3
Côte d'Ivoire	97.9
Eswatini	97.7
Liberia	96.5
Burkina Faso	94.1
Madagascar	93.9
Senegal	93.5
Guinea	92.6
Ethiopia	91.7
Cameroon	90.9
Guinea-Bissau	89.5
Comoros	89.2
Chad	84.6
Eritrea	84.5
Angola	84.1
Cabo Verde	84.0
Mauritania	84.0

Population	ASR(W)		
Ghana	84.0		
Lesotho	83.2		
Rwanda	83.2		
Sierra Leone	83.2		
Equatorial Guinea	82.5		
Central African Republic	81.8		
Nigeria	79.5		
South Sudan	77.0		
Тодо	76.3		
Congo, Democratic Republic of	76.0		
Gabon	75.9		
France, La Réunion	71.0		
Sao Tome and Principe	70.0		
Algeria	68.5		
Mauritius	68.2		
Niger	67.5		
The Republic of the Gambia	65.7		
Benin	64.0		
Botswana	60.3		
Congo, Republic of	51.9		

© International Agency for Research on Cancer 2020

All rights reserved. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization / International Agency for Research on Cancer concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate borderlines for which there may not yet be full agreement.

Data source: GLOBOCAN 2020 Map production: IARC (http://gco.iarc.fr/today) World Health Organization

All rights reserved

Zimbabwe National Cancer Registry Data

FIGURE 25

INCIDENCE: 2015

KS = Kaposi sarcoma NHL = Non-Hodgkin lymphoma NMSC = Non-melanoma skin cancer

GLOBAL STRATEGY TOWARDS THE ELIMINATION OF CERVICAL CANCER AS A PUBLIC HEALTH PROBLEM

FIGURE 3: CONCEPTUAL FRAMEWORK OF THE GLOBAL CERVICAL CANCER ELIMINATION

WHO INITIATIVE ON CERVICAL CANCER ELIMINATION

The World Health Assembly adopted the global strategy to accelerate the elimination of cervical cancer as a public health problem by 2030.

WHO'S ELIMINATION STRATEGY 3 PILLARS

- Prevention through vaccination HPV vaccination offers long-term
 - protection against cervical cancer.
- 2

Screening and treatment of precancerous lesions

can prevent pre-cancer from developing into cancer.

Timely treatment and palliative care for invasive cervical cancer

can save lives and palliative care can greatly reduce pain and suffering.

*To eliminate cervical cancer, all countries must reach and maintain an incidence rate below four per 100 000 women.

Summary Recommendations: WHO suggests using the following strategy for cervical cancer prevention

For the general population of women

Screen and Treat OR Screen, Triage and Treat

- HPV DNA as primary screening test
- Starting at age 30
- Every 5 to 10 years screening interval

For women living with HIV

Screen, Triage and Treat - ONLY

- HPV DNA as primary screening test
- Starting at age 25
- Every 3 to 5 years screening interval

ARE ALL SCREEN POSITIVE WOMEN GETTING TREATED

Percentage of women with precancerous lesions who received treatment

Baseline (2016)	Midterm (2019)	Target (2020)
53%	66%	80%

Means of verification: Programme data

- To reduce the incidence of cervical cancer it is imperative that all women with precancerous lesions are treated
- Increase to 66% is an achievement
- ? are we really treating women with HSIL, PPV of VIAC is 10-20%
- ? no stage shift at diagnosis at tertiary unit in Harare (key informant)

Treatment of preinvasive lesions

- EXCISIONAL
- ✓ LEEP
- ✓ Cone biopsy
- ✓ Hysterectomy
- ABLATIVE
- ✓Cryotherapy
- ✓ Thermal Ablation
- ✓ LASER

LEEP/LLETZ (type 1 and 2 excision)

- Since the early 1990s, LEEP is widely used for treatment as it allows histological audit of the colposcopy diagnosis, and can be performed under LA
- Challenges in LMICs
- ✓Cost
- ✓ Equipment

✓ trained personal (can only be done by trained doctors)

Cone biopsy (type 3 excision)

- Upper margin of lesion not seen
- Discrepancy between cytology and colposcopy findings
- Suspicion of microinvasion
- Endocervical cell abnormalities
- ✓ Cold knife, hot loop or laser
- ✓ Challenges- trained personal, cost, theatre time, higher risk of adverse obstetric outcomes

CRYOTHERAPY

- Cryotherapy is still the most widely used ablative method
- It is a safe and acceptable, cure rates exceed 90% when HSIL is confined to the visible part of the cervix (1-4)
- Challenges in LMICs
- ✓ Requires uninterrupted supply of refrigerant gases such as NO or medical quality CO2
- ✓The refrigerant gas may be expensive or not available in certain LMICs such as many SSA countries
- ✓ Outreach programmes difficult to implement
- Zimbabwe is currently transitioning towards TA

Thermal ablation

- Thermal ablation is a feasible alternative to cryotherapy as it uses light weight portable electrical generators
- No anaesthesia is recommended (20 vs 30-45s at 100 °C), overall cure rate= 93.8% (95% CI 90.8% to 96.0%) (5)
- Although there are few reports of patients discontinuing the procedure due to pain (5,6)
- Indian study, 61% of women treated with TA without any anaesthesia complained of some pain (though mild only in vast majority of them) and 1.5% complained of severe pain (7)

TADA STUDY

- Collaboration with IARC
- RCT- duration of treatment, need for analgesia
- Recruitment very slow, most VIAC positive patients have no disease
- Challenges of VIAC

CERVICAL CANCER TREATMENT

- Depends on stage, PS, fertility wishes of the patient
- Modalities can be surgical or radiation therapy, or multimodal
- ✓ Cone biopsy
- ✓ Trachelectomy
- \checkmark Simple hysterectomy and BPLND
- \checkmark Radical hysterectomy and BPLND
- ✓ Radiation + chemotherapy

DISPARITIES IN HIGH AND -LOW INCOME COUNTRIES

- Advanced imaging not readily available for staging CT, MRI or PET scans
- Staging primarily clinical with limited imaging investigations
- Challenges with resources and trained personnel for surgery (2 gynaecological oncologists in Zimbabwe)
- Chemoradiation not readily available in government
- NACT given may have inferior oncological outcomes

?PROPHYLACTIC AND THERAPEUTIC VACCINES

- Prophylactic vaccine in women undergoing LEEP (AMC 99)
- Most of the double blinded RCTs demonstrate that therapeutic HPV vaccination trend towards efficacy patients with CIN
- Challenge is most of the trials don't include WLHIV
- BMG modelling work to design an ideal vaccine and assess the best model to deploy it

Therapeutic vaccines

Summary of clinical HPV therapeutic vaccines.

Vaccine Platform	Vaccine	Antigen	Conditions	Phase/NCT Number	Study Start	Status
Bacterial vector	ADXS11-001	HPV16 E7	EAs,UCC	Phase II/ <u>NCT01266460</u>	May 23,2011	Completed
Vaccine			oc	Phase I/ <u>NCT01598792</u>	February 2012	Terminated
			AC,RC	Phase II/ <u>NCT02399813</u>	September 2015	Completed
			UCC,SCCHN	Phase I/Phase II <u>NCT02291055</u>	April 2015	Active, not recruiting
			SCCHN	Phase II/ <u>NCT02002182</u>	December 2013	Active, not recruiting
	Ad/MG1-E6E7	HPV16/18 E6/E7	HPV- Associated Cancers	Phase I/ <u>NCT03618953</u>	June 21,2018	Active, not recruiting

CASCADE trials network- WLHIV

- Thermal ablation vs follow-up
- Extended vs flat probes
- TA vs LEEP

CONCLUSION

- Most LMICs employ screen and treat
- Recent data showing high failure rates in WLHIV
- More studies needed to determine optimal treatment especially in WLHIV

REFERENCES

1. Alliance for Cervical Cancer Prevention (ACCP). Effectiveness, Safety, and Acceptability of Cryotherapy: A Systematic Literature Review. Cervical Cancer Prevention Issues in Depth #1. Seattle; 2003.

2. Nene BM, Hiremath PS, Kane S, Fayette J-M, Shastri SS, Sankaranarayanan R. Effectiveness, safety, and acceptability of cryotherapy by midwives for cervical intraepithelial neoplasia in Maharashtra, India. Int J Gynaecol Obstet Off Organ Int Fed Gynaecol Obstet. 2008;103(3):232–6.

3. Sankaranarayanan R, Rajkumar R, Esmy PO, Fayette JM, Shanthakumary S, Frappart L, et al. Effectiveness, safety and acceptability of "see and treat" with cryotherapy by nurses in a cervical screening study in India. Br J Cancer. 2007;96(5):738–43.

4 Martin-Hirsch PL, Paraskevaidis E, Kitchener H. Surgery for cervical intraepithelial neoplasia. Cochrane Database Syst Rev. 2000;2:CD001318.

REFERENCES

5. Viviano M, Kenfack B, Catarino R, Tincho E, Temogne L, Benski A-C, et al. Feasibility of thermocoagulation in a screen-and-treat approach for the treatment of cervical precancerous lesions in sub-Saharan Africa. BMC Womens Health. 2017;17(1):2.

6. Banerjee D, Mandal R, Mandal A, Ghosh I, Mittal S, Muwonge R, Lucas E, Basu P. A prospective randomized trial to compare safety and acceptability of

THANK YOU