

AELBOURNE

Faculty of Medicine, Dentistry and Health Sciences Melbourne School of Population and Global Health

Doxycycline PEP – antimicrobial resistance (AMR) considerations

AVAC STI Awareness Week 18 April 2023

Associate Prof. Fabian Kong BPharm, MEpi, PhD

Today

- Of trial results, cure for NG lowest and concerns
- Antimicrobial resistance (AMR)
 - STIs and commensals e.g. *S.aureus*
 - Cross resistance to other antibiotics
- Antibiotic stewardship among users
- Need for ongoing surveillance over longer follow up

THE UNIVERSITY OF

Doxycycline pharmacology

- Class: 2nd generation tetracycline
 - Less side effects
 - Greater absorption (~73-95% dose absorbed)
 - More 'fat soluble' crosses fatty cells walls of human cells
 - <u>Widely distributed</u> in body
- Broad spectrum
 - Gram+ve, Gram–ve, some anaerobes^{**}
 - Spirochetes (syphilis, TP) and parasites (malaria)
- Well tolerated
 - Common (>1%): nausea, vomit, diarrhoea, epigastric burning, tooth discolouration and photosensitivity
 - Rare (<0.1%): throat ulcers, hepatitis, benign intracranial hypertension

** Bacteroides fragilis, Clostridium, Fusobacterium, Fusobacterium spp

Effectiveness of doxy PrEP/PEP

- PrEP (n=30) and cis-women: Doxy not effective
- PEP (Ipergay, DoxyPEP, DoxyVAC): 200mg <72h sex
 - MSM/TGW
 - Follow up 35-56 weeks

Incidence reduction

- Any STI (CT/TP/NG): ~60% [47-65%]
- **CT/TP:** ~80% [70-86%CT, 73-82% TP]
- NG:
 - France

THE UNIVERSITY OF

- Ipergay²⁰¹⁵ 17% (p=0.52) [Tc-R 50-60%²⁰¹²⁻¹⁴]
- DoxyVAC²⁰²² 33% [Tc-R 65²⁰²¹]
- USA: 55%²⁰²⁰⁻²² [Tc-R 20-30%]

(1) Bolan RK. STD 2015 DOI: 10.1097/OLQ.00000000000216 (2) https://www.natap.org/2023/CROI/croi 10.htm (3) Molina J-M. Lancet Infect Dis 2018 DOI: 10.1016/S1473-3099(17)30725-9 (4) Luetkemeyer A. NEJM 2023 DOI: 10.1056/NEJMoa2211934 (5) CROI 2024

DoxyPEP leaves behind NG in the mouth

- NG in mouth
 - Higher treatment failure vs genital/rectum
 - MSM: <u>oral</u> NG \downarrow ceft. susc (\uparrow Az-R) vs other sites (BASHH2023, GRASP)
 - Major transmission via oral sex/saliva
 - Mouth is where **AMR** develops via oral commensals

DoxyPEP leaves behind lots of oral NG

Similar in IPERGAY PEP

- trends towards reduction NG at anus/urine but not in throat

Molina – "*To doxyPEP or Not to doxyPEP – That is the Question*" – IUSTI Europe Webinar #21 https://www.iusti-europe.eu/web/index.php/webinar-recordings/webinar-21/201-to-doxypep-or-not-to-doxypep

THE UNIVERSITY OF

MELBOURNE

AMR in STIs

Syphilis (TP):

- Clinical failure to Doxy (n=1)
 - Early latent neurosyphilis, 2 courses doxy (2w & 4w)

CT: no evidence of CT AMR presently

- Treatment failures \sqrt{Tc} susceptibility
- Tc-R between CT in pigs, fish meal with Tc
- Doxycycline most effective treatment for CT

Select XDR Shigella (sonnei) [87.5% Tc-resistant]

(1) Zenilman et al *STD* 1993 (2) Wang SA, *J Infect Dis* 2005 (3) Bhengraj AR Chemotherapy 2010 (4) Jones RB J Infect Dis 1990 (5) Lefevre JC Sex Transm Dis 1998 (6) Somani J, J Infect Dis 2000 (7) Seth-Smith HMB *Genome Biology and Evolution* 2017 (8) Lefevre S. Nature Comm 2023

AMR in STIs (cont.)

NG: In DoxyPEP: Slightly higher NG Tc-R in doxy arm but low sample size

AMR in STIs (cont.)

NG: Kenya study – pTetM / pblaTEM in 97%/55% isolates (n=103), assoc. with doxy empirical treatment

MG: Doxy used 1st then add 2nd drug (macrolides or fluroquinolone)

- Doxy cures ~30-40% of MG
- AMR in MG \downarrow affects other Tc e.g. **minocycline**
- IPERGAY sub-study: mutations associated with Tet-R in other bacterial species, enhanced in doxy users

(1) Cehovin A et al, JID 2018 (2) (2) Jensen J et al JEADV 2022 (3) Geisler W. STI Post-Exposure Prophylaxis with Doxycycline Consultation Agenda: NACCHO (4) Bercot B et al. CID 2021

AMR is a threat to human health (WHO)

- AMR:
 - Costly: US\$3.4 trillion/year by 2030
 - − Deadly: 1.3-**5.0mil** (2019) \rightarrow (2050) **10mil/yr** \approx global cancer deaths in 2020
 - Deaths from 6 bacteria: human commensals:
 - E.coli, S.aureus, K.pneumoniae, S.pneumoniae, A.baumannii, and P.aeruginosa
- 10days doxy: 100-fold \downarrow bifidobacteria, \uparrow Tc-R in gut commensal
- Tc-R in mouth(Strept), gut(E.coli), resp tract(5.8x 个 Tc-R)
- Use in acne
 - Select for Tc-resist NG $^{(25\%\,NG\,'bystander')}$ and \uparrow AMR in acne
 - Significant 个 URTI (OR 2.8), female UTI (OR 1.9), pharyngitis (OR 4.3)
- Use in malaria: Tc-R in *S.aureus* and *E. coli*

(1) UNEP. Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance 2023 (2) Murray et al. *Lancet* 2022 (3) Saarela M, et al. *Int J* Antimicrob 2007 (4) Truong R et al. JAC Antimicrob Resist 2022 (5) Tedijanto C et al. Proc Natl Acad Sci USA 2018 (6) Farrah G et al. Dermatol Ther 2016 (7) Bhate K, BJGP open 2021 (8) Lesens O et al. Emerg Infect Dis 2007 (9) Vento TJ et al. BMC Infect Dis 2013

Commensal AMR – baseline to month 12

• S. aureus (not MRSA):

THE UNIVERSITY OF

- DoxyPEP: Doxy-R 个 from 4% to 12% (p<0.05)
- Control no significant change
- Commensal Neisseria in oropharynx
 - Mth 12: DoxyPEP vs control 70% vs 45 % (p<0.05)
 - DoxyPEP: Doxy-R 个 from 63% to 70% (p=0.2)
- Resistance to other antibiotics
 - Control (n=19) Pen (n=2)
 - DoxyPEP (n=20): Pen (n=1), azithro (n=3), cipro (n=2)
 - No resistance to ceftriaxone/cefixime

REF CROI 2023: <u>https://www.aidsmap.com/news/feb-2023/no-marked-increase-gonorrhoea-resistance-doxypep-study?utm_source=conference+news-english&utm_medium=email&utm_campaign=2023-02-21 AMR DoxyPEP CROI 2023 <u>https://www.natap.org/2023/CROI/croi_11.htm</u></u>

Speed up NG AMR spread & cross-resistance

- DoxyPEP accelerate spread of doxy AMR in NG
 ... if select <u>all</u> Tc-R: 个 AMR to **other** antibiotics
- MSM: 63% ^(214/340) NG intermediate Tc MIC
 - 'Reservoir for rapid evolution of resistance'
- NG: \downarrow Tc suscept. had \downarrow ceftriaxone suscept.

Antibiotic consumption

- DoxyPEP does not prolong life of ceftriaxone
- \downarrow ceft & azithro use at cost of high doxycycline use

(1) Reichert E et al. PREPRINT https://doi.org/10.1101/2023.04.24.23289033 (2) Mortimer T et al. CID 2023 DOI https://doi.org/10.1093/cid/ciad279 (3) Vanbaelen T et al. STD 2023 https://doi.org/10.1093/cid/ciad279 (3) Vanbaelen T et al. STD 2023 https://doi.org/10.1093/cid/ciad279 (3) Vanbaelen T et al. STD 2023 https://doi.org/10.1093/cid/ciad279 (3) Vanbaelen T et al. STD 2023 https://doi.org/10.1093/cid/ciad279 (3) Vanbaelen T et al. STD 2023 https://doi.org/10.1097/OLQ.0000000000000001810 (4) Whiley et al, LancetID 2023 https://doi.org/10.1016/S1473-3099(23)00359-6

High consumption and poor antibiotic stewardship

- DoxyPEP: 25% took >10 doses/month
- ~8-10% of PrEP users (London, Melbourne and Amsterdam) use Doxy
- Used amoxicillin, azithromycin or ciprofloxacin as PEP.
- Many purchased online or used leftovers
- Buying online without prescriptions

(1) Chow EPF, The Lancet HIV 2019 (2) Carveth-Johnson T, et al. Lancet HIV 2018 (3) Evers YJ, vet al. Sex Transm Infect 2020 (4) Vanbaelen T et al. Sex Transm Infect 2022

Summary

- 'Noise' of AMR using DoxyPEP
- Needs ongoing AMR surveillance
 STIs and commensals

- <u>Individual</u> effects vs <u>population</u> effects

 Not for everyone, target use e.g. those with TP
- Educate on AMR and DoxyPEP e.g. doesn't cure NG [Tc-R high: UK=75%, AUS=41%^{VIC=51%}]

THE UNIVERSITY OF

NG Effectiveness in EU

- EUCAST MIC >0.5mcg/mL (tetracycline resistance)
- ~63% isolates resistant [<50% = 'effective']

Countries (no. of isolates)	MIC range (mg/L)	MIC ₅₀ (mg/L)	MIC ₉₀ (mg/L)	EUCAST-no. of resistant isolates (%) [#]	CLSI-no. of resistant isolates (%) ^b	Tetracycline susceptibility testing method ^c
Austria (n = 379)	0.125-128	1	32	278 (73.4)	178 (47.0)	Decentralised, MGST
Belgium (n = 669)	≤0.125-≥128	1	32	516 (77.1)	253 (37.8)	Decentralised, AD
Bulgaria (n = 12)	0.25-32	1	16	9 (75.0)	2 (16.7)	Centralised, MGST
Czechia (n = 112)	0.125-64	1	32	57 (50.9)	24 (21.4)	Centralised, MGST
Estonia (n = 7)	0.064-16	0.5	16	1 (14.3)	1 (14.3)	Decentralised, MGST
France (n = 220)	0.25->256	2	32	203 (92.3)	126 (57.3)	Decentralised, MGST
Germany (n = 200)	0.25-256	2	32	173 (86.5)	158 (79.0)	Decentralised, MGST
Greece (n = 100)	0.032-16	0.5	1	33 (33.0)	7 (7.0)	Decentralised, MGST
Hungary (n = 122)	0.125-128	1	16	73 (59.8)	26 (21.3)	Centralised, MGST
Ireland (n = 248)	0.125-32	0.5	1	114 (46.0)	20 (8.1)	Decentralised, MGST
Malta (n = 61)	0.064-32	0.5	8	20 (32.8)	16 (26.2)	Decentralised, MGST
The Netherlands (n = 196)	0.125-64	1	16	128 (65.3)	39 (19.9)	Centralised, MGST
Norway (n = 827)	0.032-64	0.5	16	324 (39.2)	170 (20.6)	Decentralised, MGST
Poland (n = 15)	0.5-16	1	4	8 (53.3)	2 (13.3)	Centralised, MGST
Portugal (n = 841)	0.25->256	2	64	788 (93.7)	693 (82.4)	Decentralised, MGST
Slovakia (n - 80)	0.125-32	0.5	16	37 (46.3)	19 (23.8)	Centralised, MGST
Slovenia (n = 285)	0.032-32	0.5	1	71 (<mark>24.9</mark>)	14 (4.9)	Decentralised, MGST
Spain (n = 213)	0.064-32	0.25	2	39 (18.3)	22 (10.3)	Decentralised, MGST
Sweden (n = 200)	0.125->256	1	32	162 (81.0)	80 (40.0)	Decentralised, MGST
Total = 4787	0.032->256	1	16	3034 (63.4%)	1850 (38.6%)	

The bold values are the values for the total number of isolates. No. = number; MIC = minimum inhibitory concentration; MGST = MIC gradient strip test (mostly Etest; bioMérieux, Marcy-Étoile, France); AD = agar dilution method. ^aBased on the clinical tetracycline resistance breakpoint (MIC > 0.5 mg/L) stated by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (v14.0; https:// www.eucast.org/clinical_breakpoints). ^bBased on the clinical tetracycline resistance breakpoint (MIC > 1.0 mg/L) stated by the US Clinical and Laboratory Standards Institute (www.cbt.org), ^cTetracycline MICs (mg/L) were determined by either MIC gradient strip test, according to manufacturer's instructions, or agar dilution.

Table 1: Tetracycline susceptibility in Neisseria gonorrhoeae isolates (n = 4787) cultured in 19 EU/EEA countries in 2022. Unemo 2024 Lancet https://doi.org/10.1016/j.lanepe.2024.100871

Melbourne School of Population and Global Health

Thank you

Associate Prof. Fabian Kong Deputy Head, Sexual Health Unit Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health, University of Melbourne <u>kongf@unimelb.edu.au</u>

